分類または判断の問題での多変量解析について

閲覧数1,560
ダウンロード数3
履歴確認

資料紹介

クラスタリング手法は個体の「クラスター」、「グループ」、「クラス」を、同じクラスター内の個体が別のクラスターに属する個体よりも何らかの意味で互いによく「似る」ように構成する方法である。クラスタリングの特徴は、判別・分類とは別であり、グループの数が既知であり、操作の目的が新しい観測値を1つのグループに割り当てている。そして、基本的手法で仮定を設けず、グループ分けは類似性や距離に基づいている。

資料の原本内容 ( この資料を購入すると、テキストデータがみえます。 )

分類または判断の問題での多変量解析について
 
 クラスタリング手法は個体の「クラスター」、「グループ」、「クラス」を、同じクラスター内の個体が別のクラスターに属する個体よりも何らかの意味で互いによく「似る」ように構成する方法である。クラスタリングの特徴は、判別・分類とは別であり、グループの数が既知であり、操作の目的が新しい観測値を1つのグループに割り当てている。そして、基本的手法で仮定を設けず、グループ分けは類似性や距離に基づいている。
 ここでは、クラスターが他のクラスターから分枝している解を生み出す特定の手法は、階層的手法として知られ、n個の個体を遂次大きなグループに併合していく凝集型の方法と、個体の集合を遂次小さなグループに細分していく分枝形の方法に区別できる。凝集形と分枝形の方法は、ともに個体間の類似性または距離の行列に適用でき、それらによる結果は、デンドログラムの形式で提示できるであろう。
 次にクラスタリング手法の分類をすると、まず個体の1つが、1つだけのクラスターに属するか、2つ以上に属することを許すかによって、排他的か非排他的であるか分類し、分類のために利用する変数以...

コメント0件

コメント追加

コメントを書込むには会員登録するか、すでに会員の方はログインしてください。